Nguyên hàm In x là dạng bài xích tập dượt khiến cho nhiều học viên bị mất mặt điểm. Vì vậy nhằm ăn đầy đủ điểm bài xích tập dượt phần này những em cần thiết tóm chắc chắn toàn cỗ công thức tương tự rèn luyện thiệt nhiều loại bài xích tập dượt. Hãy tìm hiểu thêm tức thì nội dung bài viết tiếp sau đây nhằm vẫn tồn tại điểm phần này nhé!
1. Khái niệm nguyên vẹn hàm lnx
Bạn đang xem: nguyên hàm của ln x
Ta với hàm số $f(x)$ xác lập bên trên K. Hàm số $f(x)$ đó là nguyên vẹn hàm của hàm số $f(x)$ bên trên K nếu như $f'(x)=f(x)$ với $x\in K$. Nguyên hàm của $lnx$ sẽ tiến hành tính như sau:
Đặt $\left\{\begin{matrix}u=lnx\\dv=dx \end{matrix}\right.\Rightarrow \left\{\begin{matrix}
du=\frac{1}{x}dx\\v=x \end{matrix}\right.$
Ta có $\int lnxdx=xlnx-\int dx'=xlnx-x+C$
2. Bảng công thức nguyên vẹn hàm của ln(x)
Ta với bảng công thức nguyên hàm In x và một vài nguyên vẹn hàm cơ phiên bản thông thường bắt gặp.
3. Cách tính nguyên vẹn hàm lnx
3.1. Nguyên hàm ln(x+1)
Ví dụ 1: Với $\int_{1}^{2}ln(x+1)dx=aln3+bln2+c$, vô tê liệt a, b, c là những số nguyên vẹn. Tính S=a+b=c.
Giải:
Đặt $\left\{\begin{matrix}u=ln(x+1)\\dv=dx \end{matrix}\right.\Rightarrow \left\{\begin{matrix}
du=\frac{1}{x+1}dx\\v=x+1 \end{matrix}\right.$
Lúc này tớ có:
$\int_{1}^{2}ln(x+1)dx= (x+1)ln(x+1)\left|\begin{matrix}
2\\1 \end{matrix}\right.-\int_{1}^{2}dx=3ln3-2ln2-1$
Như vậy: a=3; b=-2; c=-1
$\Rightarrow$ S=a+b+c=0
Ví dụ 2: Tìm nguyên vẹn hàm của hàm số sau: $B=x^2Inxdx$
Giải:
B=$\int x^{2}lnxdx=\int lnxd(\frac{x^{3}}{3})$
=$\frac{x^{3}}{3}lnx-\int \frac{x^{3}}{3}.d(lnx)$
=$\frac{x^{3}}{3}lnx-\int \frac{x^{3}}{3}.\frac{dx}{3}=\frac{x^{3}}{3}lnx-\frac{x^{3}}{9}+C$
Nắm đầy đủ kỹ năng về nguyên vẹn hàm và những kỹ năng Toán đua trung học phổ thông Quốc Gia không giống với cỗ bí mật độc quyền của VUIHOC ngay!
3.2. Nguyên hàm 1+ln/x
Ví dụ 1:
Tìm nguyên vẹn hàm J=$\int \frac{(lnx+1)lnx}{(lnx+1+x)}dx$
Giải:
Ta có: J=$\int \frac{lnx+1}{x(\frac{lnx+1}{x}+1)}^{3}.\frac{lnx}{x^{2}}dx$
Đặt t=$\frac{lnx+1}{x}\Rightarrow dt=\frac{lnx}{x^{2}}dx \Rightarrow J=\int \frac{tdt}{(t+1)^{3}}=\int [\frac{1}{(t+1)^{3}}-\frac{1}{(t+1)^{2}}]dt$
=$-\frac{1}{2(t+1)^{2}}+\frac{1}{t+1}+C$
=$-\frac{x^{2}}{2(lnx+1+x^{2})}+\frac{x}{lnx+x+1}+C$
Ví dụ 2: Tìm nguyên vẹn hàm của:
a) ∫x.2x dx
b) ∫(x2-1) ex dx
Giải:
a) Đặt $\left\{\begin{matrix}u=x\\dv=2^{x}dx\Rightarrow \left\{\begin{matrix}
du=dx\\v=\frac{2^{x}}{ln2}. \end{matrix}\right. \end{matrix}\right.$
Ta có: $\int x2^{x}dx=\frac{x.2^{x}}{ln2}-\int \frac{2^{x}}{ln2}dx=\frac{x.2^{x}}{ln2}-\frac{2^{x}}{ln^{2}2}+C$
b) Đặt $\left\{\begin{matrix}u=x^{2}-1\\dv=e^{x}dx \end{matrix}\right.\Rightarrow \left\{\begin{matrix}du=2xdx\\v=e^{x}dx \end{matrix}\right.$
Suy đi ra tớ có $\int f(x)dx=(x2-1)ex-\int 2x.ex$ dx
Đặt $\left\{\begin{matrix}u=2x\\dv=e^{x}dx \end{matrix}\right.\Rightarrow \left\{\begin{matrix}du=2dx\\v=e^{x}dx \end{matrix}\right.$
Ví dụ 3: Tìm toàn bộ những nguyên vẹn hàm của hàm số $f(x)=(3x^{2}+1).lnx$
A. $\int f(x)dx=x(x^{2}+1)lnx-\frac{x^{3}}{3}+C$
B. $\int f(x)dx=x^{3}lnx-\frac{x^{3}}{3}+C$
C. $\int f(x)dx=x(x^{2}+1lnx-\frac{x^{3}}{3}-x+C$
D. $\int f(x)dx=x^{3}lnx-\frac{x^{3}}{3}-x+C$
Giải:
Đặt $\left\{\begin{matrix}u=lnx\\dv=(3x^{2}+1)dx \end{matrix}\right.\Rightarrow \left\{\begin{matrix}du=\frac{1}{x}dx\\v=\int (3x^{2}+1)dx=x^{3}+x \end{matrix}\right.$
$\Rightarrow I=(x^{3}+x)lnx-\int (x^{3}+x)\frac{1}{x}dx=x(x^{2}+1)lnx-\int (x^{2}+1)dx=x(x^{2}+1lnx-\frac{x^{3}}{3}-x+C.$
=> Đáp án C.
3.3. Nguyên hàm của ln(ax+b)
Ví dụ 1:
Bất phương trình $In(2x^2+3)>In(x^2+ax+1)$ nghiệm đích thị với từng số thực khi?
Giải:
Ví dụ 2: Tính nguyên vẹn hàm:
a) $\int 2xln(x-1)dx$
b) $\int \frac{ln(x+1)}{x^{2}}$
Giải:
a) Đặt $\left\{\begin{matrix}u=ln(x-1)\\dv=2xdx \end{matrix}\right.\Rightarrow \left\{\begin{matrix}du=\frac{1}{x-1}dx\\v=x^{2}-1 \end{matrix}\right.$
Ta có $\int 2xln(x-1)dx$
=$(x^{2}-1)ln(x-1)-\int (x+1)dx$
=$(x^{2}-1)ln(x-1)-\int (x+1)dx$
=$(x^{2}-1)ln(x-1)-\frac{x^{2}}{2}-x+C$
Đặt $\left\{\begin{matrix}u=ln(1+x)\\dv=\frac{1}{x^{2}}dt\end{matrix}\right.\Rightarrow \left\{\begin{matrix}
du=\frac{1}{(1+x)}dx\\v=-\frac{1}{x}-1=-\frac{1+x}{x} \end{matrix}\right.$
=> $F(x)=-\frac{1+x}{x}.ln(1+x)+\int \frac{1}{x}dx$
= $-\frac{1+x}{x}ln(1+x)+ln|x|+C$
3.4. Nguyên hàm của ln(x^2+1)dx
Ví dụ 1:
Tìm nguyên vẹn hàm I=$xIn(x^2+1)x2+1dx$
Giải:
Ví dụ 2:
Cho $\int_{1}^{2}\frac{ln(1+x)}{x^{2}}dx=aln2+bln3$, với a và b là những số hữu tỉ. Tính P=ab
A. P=$\frac{3}{2}$
B. P=0
C. P=$\frac{-9}{2}$
D. P=-3
Giải:
Ta với I=$\int_{1}^{2}\frac{ln(1+x)}{x^{2}}dx=aln2+bln3$
Đặt $\left\{\begin{matrix}u=ln(1+x)\\dv=\frac{1}{x^{2}}dx \end{matrix}\right.\Rightarrow \left\{\begin{matrix}du=\frac{1}{1+x}dx\\v=-\frac{1}{x} \end{matrix}\right.$
Xem thêm: tấn tạ yến kg hg dg g
Khi tê liệt I=$-\frac{1}{x}ln(1+x)\left|\begin{matrix}
2\\1 \end{matrix}\right.+\int_{1}^{2}\frac{1}{x(1+x)}dx=-\frac{1}{2}ln3+ln2+\int_{1}^{2}(\frac{1}{x}-\frac{1}{1+x})dx$
=$-\frac{1}{2}ln3+ln2+(ln\frac{x}{x+1})\left|\begin{matrix}2\\1 \end{matrix}\right.=-\frac{1}{2}ln3+ln2+2ln2-ln3=3ln2-\frac{3}{2}ln3$
Suy đi ra a=3, b=$-\frac{3}{2}$. Vậy P=$ab=\frac{-9}{2}$
Chọn đáp án C.
PAS VUIHOC – GIẢI PHÁP ÔN LUYỆN CÁ NHÂN HÓA
Khóa học tập online ĐẦU TIÊN VÀ DUY NHẤT:
⭐ Xây dựng trong suốt lộ trình học tập kể từ mất mặt gốc cho tới 27+
⭐ Chọn thầy cô, lớp, môn học tập theo dõi sở thích
⭐ Tương tác thẳng hai phía nằm trong thầy cô
⭐ Học đến lớp lại cho tới lúc nào hiểu bài xích thì thôi
⭐ Rèn tips tricks gom tăng cường thời hạn thực hiện đề
⭐ Tặng full cỗ tư liệu độc quyền vô quy trình học tập tập
Đăng ký học tập demo free ngay!!
3.5. Nguyên hàm của hàm số f(x)=ln/x
Ví dụ 1: Tính đạo hàm của hàm số f(x)=1x+In(x)x
Giải:
Ta có:
y’= $-\frac{1}{x^{2}}+\frac{ln(x)'x-ln(x)'x}{x^{2}}$
=$-\frac{1}{x^{2}}+\frac{1+ln(x)}{x^{2}}=-\frac{ln(x)}{x^{2}}$
Ví dụ 2:
Giả sử tích phân I=$\int_{1}^{5}\frac{1}{1+\sqrt{3x+1}}dx$=a+bln3+cln5.
Lúc đó:
A. $a+b+c=\frac{5}{3}$
B. $a+b+c=\frac{4}{3}$
C. $a+b+c=\frac{7}{3}$
D. $a+b+c=\frac{8}{3}$
Giải:
Đặt t = $\sqrt{3x+1}\Rightarrow dx=\frac{2}{3}tdt$
Đổi cận
Ta với I=$\int_{1}^{5}\frac{1}{1+\sqrt{3x+1}}dx=\int_{1}^{4}\frac{1}{1+t}.\frac{2}{3}tdt=\frac{2}{3}\int_{2}^{4}\frac{t}{t+1}dt=\frac{2}{3}\int_{2}^{4}(1-\frac{1}{t+1})dt=\frac{2}{3}(t-ln|1+t|)\left|\begin{matrix}4\\2 \end{matrix}\right.=\frac{4}{3}+\frac{2}{3}ln3-\frac{2}{3}ln5$
Do đó $a=\frac{4}{3};b=\frac{2}{3};c=-\frac{2}{3}$
Vậy $a+b+c=\frac{4}{3}$
=> Chọn đáp án B.
Ví dụ 3: Biết tích phân $\int_{0}^{ln6}\frac{e^{x}}{1+\sqrt{e^{x}+3}}dx=a+bln2+cln2$, với a, b, c là những số nguyên vẹn. Tính T=a+b+c
A. T=-1
B. T=0
C. T=2
D.T=1
Giải:
Đặt t=$\sqrt{e^{x}+3}\Rightarrow t^{2}=e^{x}+3\Rightarrow 2tdt=e^{x}dx$
Đổi cận $\left\{\begin{matrix}x=ln6\\x=0 \end{matrix}\right.\Rightarrow \left\{\begin{matrix}
t=3\\t=2 \end{matrix}\right.$
Suy ra $\int_{0}^{ln6}\frac{e^{x}}{1+\sqrt{e^{x}+3}}dx=\int_{2}^{3}\frac{2tdt}{1+t}dt=(2t-2ln|t+1|)\left|\begin{matrix}3\\2 \end{matrix}\right.$
=$(6-2ln4)-(4-2ln3)=2-4ln2+2ln3 \Rightarrow \left\{\begin{matrix}a=2\\b=-4\\c=2 \end{matrix}\right.$
Vậy T=0
=> Chọn đáp án B
3.6. Tính nguyên vẹn hàm của ln(lnx)/x
Tính nguyên vẹn hàm $I=\int \frac{ln(lnx)}{x}dx$ được thành quả nào là sau đây?
Ví dụ 1: Tính nguyên vẹn hàm của hàm số I=$\int \frac{ln(lnx)}{x}dx$
Giải:
Đặt lnx=t => dt = $\frac{dx}{x}$
Suy đi ra I=$\int \frac{ln(lnx)}{x}dx=\int lntdt$
Đặt $\left\{\begin{matrix}u=lnt\\dv=dt \end{matrix}\right.\Rightarrow \left\{\begin{matrix}du=\frac{dt}{t}\\v=t \end{matrix}\right.$
Theo công thức tính nguyên vẹn hàm từng phần tớ có:
I=$tlnt-\int dt=tlnt-t+C=lnx.ln(lnx)-lnx+C$
Ví dụ 2:
Cho I=$\int_{1}^{e}\frac{lnx}{x(lnx+2)^{2}}dx=aln3+bln2+\frac{c}{3}$ với a, b, c $\in Z$. Khẳng quyết định nào là tại đây đích thị.
A. $a^{2}+b^{2}+c^{2}=1$
B. $a^{2}+b^{2}+c^{2}=11$
C. $a^{2}+b^{2}+c^{2}=9$
D. $a^{2}+b^{2}+c^{2}=3$
Giải:
Ta với I=$\int_{1}^{e}\frac{lnx}{x(lnx+2)^{2}}dx, bịa đặt lnx+2=t => \frac{dx}{x}=dt$
I=$\int_{2}^{3}\frac{t-2}{t^{2}}dt=\int_{2}^{3}\frac{1}{t}dt-2\int_{2}^{3}\frac{1}{t^{2}}dt$
=$lnt\left|\begin{matrix}3\\2 \end{matrix}\right.+\frac{2}{t}\left|\begin{matrix}3\\2 \end{matrix}\right.$
=$ln3-ln2+\frac{2}{3}-\frac{2}{2}=ln3-ln2-\frac{1}{3}$
Suy đi ra a=1;b=-1;c=-1
Vậy $a^{2}+b^{2}+c^{3}=3$
Bên cạnh tê liệt, thầy Trường Giang đã với bài xích giảng rất rất hoặc về nguyên vẹn hàm tích phân với những tip giải bài xích tập dượt rất rất hữu ích nhằm giải đề đua trung học phổ thông Quốc gia. Các em nằm trong coi vô đoạn phim tiếp sau đây nhé!
Nắm đầy đủ bí mật đạt 9+ đua Toán chất lượng nghiệp trung học phổ thông Quốc Gia ngay
Sau nội dung bài viết này, kỳ vọng những em vẫn tóm chắc chắn được toàn cỗ lý thuyết, công thức về nguyên vẹn hàm Inx, kể từ tê liệt áp dụng hiệu suất cao vô bài xích tập dượt. Để đạt thêm nhiều kỹ năng hoặc em hoàn toàn có thể truy vấn tức thì Vuihoc.vn nhằm ĐK thông tin tài khoản hoặc tương tác trung tâm tương hỗ để sở hữu được kỹ năng rất tốt sẵn sàng mang đến kỳ đua ĐH tiếp đây nhé!
>> Xem thêm:
Xem thêm: cosx bằng gì
- Phương pháp tính tích phân từng phần và ví dụ minh họa
- Đầy đầy đủ và cụ thể bài xích tập dượt phương trình logarit với điều giải
- Tuyển tập dượt lý thuyết phương trình logarit cơ bản
Bình luận