hình lăng trụ tam giác đều

Thể tích khối lăng trụ tam giác đều là dạng bài xích xuất hiện nay không ít nhập đề thi đua ĐH trong thời hạn. Vì vậy nội dung bài viết tiếp sau đây tiếp tục hỗ trợ không thiếu thốn công thức tính thể tích khối lăng trụ tam giác đều na ná bài xích luyện nhằm những em rất có thể tìm hiểu thêm.

1. Hình lăng trụ tam giác đều là gì?

Bạn đang xem: hình lăng trụ tam giác đều

Lăng trụ tam giác đều đó là hình lăng trụ đem nhị lòng là nhị tam giác đều đều bằng nhau.

Hình lăng trụ tam giác đều

2. Tính hóa học hình lăng trụ tam giác đều

Một số đặc thù của hình lăng trụ tam giác đều như sau:

  • Hình lăng trụ tam giác đều phải sở hữu 2 lòng là nhị tam giác đều bởi vì nhau 

  • Các cạnh lòng bởi vì nhau

  • Các mặt mũi mặt của hình lăng trụ tam giác đều là những hình chữ nhật bởi vì nhau

  • Các mặt mũi mặt và nhị lòng luôn luôn vuông góc với nhau

>>Đăng ký tức thì sẽ được thầy cô ôn luyện hoàn hảo cỗ kỹ năng và kiến thức hình học tập không khí 12<<<

3. Công thức tính thể tích khối lăng trụ tam giác đều

Thể tích của khối lăng trụ tam giác đều bởi vì diện tích S của hình lăng trụ nhân với độ cao hoặc bởi vì căn bậc nhị của tía nhân với hình lập phương của toàn bộ những cạnh mặt mũi v, sau đó chia vớ cả cho 4.

Công thức tính thể tích khối lăng trụ tam giác đều như sau:

V = S.h = (\sqrt{3})/4a^{3}h

Trong đó:

  • V: Thể tích khối lăng trụ tam giác đều (đơn vị m^{3}).

  • S: Diện tích khối lăng trụ tam giác đều (đơn vị m^{2}).

  • H: Chiều cao khối lăng trụ tam giác đều (đơn vị m).

Thể tích khối lăng trụ tam giác đều

4. Công thức tính diện tích S khối lăng trụ tam giác đều

4.1. Tính diện tích S xung quanh

Diện tích xung xung quanh lăng trụ tam giác đều tiếp tục bởi vì tổng diện tích S những mặt mũi mặt hoặc bởi vì với chu vi của lòng nhân với độ cao.

S_{xq}=P.h

Trong đó: 

  • P: chu vi đáy

  • H: chiều cao

4.2. Tính diện tích S toàn phần

Diện tích toàn phần của khối lăng trụ tam giác đều chủ yếu bởi vì bằng tổng diện tích S những mặt mũi mặt và diện tích S của nhị lòng.

V= s.h= \frac{\sqrt{3}}{4a^{3}}.h

Trong đó:

  • A: chiều lâu năm cạnh đáy

  • H: chiều cao

5. Một số bài xích thói quen thể tích lăng trụ tam giác đều (có điều giải chi tiết)

Câu 1: Tính thể tích khối lăng trụ tam giác đều ABC.A’B’C’ đem cạnh lòng bởi vì 8cm và mặt mũi bằng phẳng A’B’C’ tạo nên với lòng ABC một góc bởi vì $60^{0}$.

Giải:

Gọi I là trung điểm của BC tao có:

AI\perp BC (theo đặc thù lối trung tuyến của tam giác đều)

A'I\perp BC (vì A’BC là tam giác cân)

\widehat{A'BC,ABC}=60^{0}

=> AA= AI.tan60^{0}=(\frac{8\sqrt{3}}{2}).\sqrt{3}= 12 cm

Ta có: S(ABC)= (\frac{8\sqrt{3}}{4})=2\sqrt{3}

Thể tích khối lăng trụ tam giác đều ABCA’B’C’ là:

V= AA’.S(ABC)= 12.2\sqrt{3}=24\sqrt{3} (cm^{3}) (cm^{3})

Câu 2: Cho hình lăng trụ ABC.A’B’C’ lòng ABC là tam giác đều với cạnh a bởi vì 2 centimet và độ cao h bởi vì 3cm. Tính thể tích hình lăng trụ ABC.A’B’C’?

Giải:

Vì lòng của lăng trụ là tam giác đều cạnh a

V=S_{ABC}.h=\sqrt{3}.3=3\sqrt{3}(cm^{3})

Xem thêm: Địa chỉ shop giày Vans chính hãng ở TPHCM giá tốt, đa dạng mẫu mã

Câu 3: Tính thể tích của khối lăng trụ tam giác đều phải sở hữu cạnh lòng bởi vì 2a và cạnh mặt mũi bởi vì a?

Giải:

Vì đó là hình lăng trụ đứng nên lối cao tiếp tục bởi vì a

Đáy là tam giác đều nên:

S_{ABC}=\frac{2a^{2}\sqrt{3}}{4}=a^{2}\sqrt{3}

=> V= S_{ABC}.a=a^{2}\sqrt{3}.a=a^{3}\sqrt{3}

Nhận tức thì bí quyết ôn luyện hoàn hảo cỗ kỹ năng và kiến thức và cách thức giải từng dạng bài xích luyện hình học tập ko gian 


 

Câu 4: Cho hình lăng trụ tam giác đều ABC.A’B’C’. Tính thể tích khối lăng trụ này khi:

a) AB = 2 cm; AA’ = 6 cm

b) AB = 6 cm; BB’ = 8 cm

Giải:

a) Theo đề bài xích tao có:

a= AB= 2cm

h= AA’= 6cm

Áp dụng công thức tính thể tích lăng trụ tam giác đều:

V= h.a^{2}.\frac{\sqrt{3}}{4}=6.2^{2}.\frac{\sqrt{3}}{4}=6\sqrt{3}

b) Theo đề bài xích tao có:

a= AB= 6cm

h= BB’= 8cm

Áp dụng công thức tính thể tích lăng trụ tam giác đều:

V= h.a^{2}.\frac{\sqrt{3}}{4}=8.6^{2}.\frac{\sqrt{3}}{4}=72.\sqrt{3}(cm^{2})

Câu 5: Tính thể tích V của khối lăng trụ tam giác đều phải sở hữu toàn bộ những cạnh bởi vì a.

Giải:

Khối lăng trụ tiếp tục cho rằng lăng trụ đứng đem cạnh mặt mũi bởi vì a.

Đáy là tam giác đều cạnh a.

=> V= a.\frac{a^{2}\sqrt{3}}{4}=\frac{a^{2}\sqrt{3}}{4}

Đặc biệt, thầy Tài tiếp tục đem bài xích giảng về thể tích khối lăng trụ vô cùng hoặc dành riêng cho chúng ta học viên VUIHOC. Trong bài xích giảng, thầy Tài đem share vô cùng rất nhiều cách thức giải bài xích đặc biệt quan trọng, nhanh chóng và thú vị, nên là những em chớ bỏ dở nhé!


Trên đó là tổ hợp công thức tính thể tích khối lăng trụ tam giác đều cũng như các dạng bài xích luyện thông thường bắt gặp nhập công tác Toán 12. Nếu những em ham muốn đạt thành phẩm cực tốt thì nên truy vấn Vuihoc.vn và ĐK thông tin tài khoản nhằm tìm hiểu thêm những công thức toán hình 12 và luyện đề từng ngày! Chúc những em đạt thành phẩm cao nhập kỳ thi đua trung học phổ thông Quốc Gia tiếp đây.

PAS VUIHOCGIẢI PHÁP ÔN LUYỆN CÁ NHÂN HÓA

Khóa học tập online ĐẦU TIÊN VÀ DUY NHẤT:  

⭐ Xây dựng trong suốt lộ trình học tập kể từ mất mặt gốc cho tới 27+  

⭐ Chọn thầy cô, lớp, môn học tập bám theo sở thích  

⭐ Tương tác thẳng hai phía nằm trong thầy cô  

⭐ Học đến lớp lại cho tới lúc nào hiểu bài xích thì thôi

⭐ Rèn tips tricks canh ty bức tốc thời hạn thực hiện đề

⭐ Tặng full cỗ tư liệu độc quyền nhập quy trình học tập tập

Đăng ký học tập demo free ngay!!

>> Xem Thêm:

Xem thêm: công bội của cấp số cộng

  • Công thức tính thể tích khối tròn trặn xoay và bài xích luyện vận dụng
  • Công thức tính thể tích khối cầu nhanh chóng và đúng mực nhất
  • 12 Công thức tính thể tích khối chóp kèm cặp ví dụ cụ thể
  • Công thức tính thể tích khối trụ tròn trặn xoay và bài xích tập
  • Công thức tính thể tích khối nón và bài xích tập