Bách khoa toàn thư banh Wikipedia
"Không" thay đổi phía sắp tới. Đối với những khái niệm không giống, coi Không (định hướng).
Bạn đang xem: 0 có phải số nguyên dương không
Đối với những khái niệm không giống, coi 0.
0 | ||||
---|---|---|---|---|
Số đếm | 0 | |||
Bình phương | 0 (số) | |||
Lập phương | 0 (số) | |||
Tính chất | ||||
Phân tích nhân tử | 0 | |||
Chia không còn cho | mọi số | |||
Biểu diễn | ||||
Nhị phân | 02 | |||
Tam phân | 03 | |||
Tứ phân | 04 | |||
Ngũ phân | 05 | |||
Lục phân | 06 | |||
Bát phân | 08 | |||
Thập nhị phân | 012 | |||
Thập lục phân | 016 | |||
Nhị thập phân | 020 | |||
Cơ số 36 | 036 | |||
Lục thập phân | 060 | |||
Số La Mã | N | |||
|
0 (được phát âm là "không", còn giờ Anh phát âm là zero, bắt mối cung cấp kể từ từ giờ Pháp zéro /zeʁo/)[1][2] là số vẹn toàn nằm trong lòng số -1 và số 1. Số ko là chữ số ở đầu cuối được dẫn đến nhập đa số những khối hệ thống số; nó ko nên là một số trong những điểm (số điểm chính thức kể từ số 1. Nhưng một vài ba nước Ả Rập số điểm chính thức kể từ số 0), ko xuất hiện trong tương đối nhiều khối hệ thống số cổ và được thay cho vì chưng một điểm trống trải hay như là 1 ký hiệu cực kỳ không giống với những số điểm.
Số 0[sửa | sửa mã nguồn]
0 là số vẹn toàn đứng ngay lập tức trước số dương 1 và ngay lập tức sau số -1. Trong đa số (không nên vớ cả) những khối hệ thống số, số 0 được xác lập trước định nghĩa 'số vẹn toàn âm' được đồng ý.
Số 0 là một số trong những vẹn toàn xác lập một số trong những lượng hoặc một lượng hoặc độ cao thấp có mức giá trị là trống rỗng. Nghĩa là nếu như số bạn bè của một người vì chưng 0 Tức là người bại liệt không tồn tại bạn bè nào là, hoặc nếu như vật gì bại liệt sở hữu trọng lượng vì chưng 0 thì nó không tồn tại trọng lượng, hoặc là nếu như một vật sở hữu độ cao thấp vì chưng 0 thì nó không tồn tại độ cao thấp.
Tuy những mái ấm toán học tập và phần rộng lớn quý khách đều đồng ý 0 là một số trong những, tuy nhiên một số trong những người không giống rất có thể nhận định rằng 0 ko nên là một số trong những vì như thế chúng ta nhận định rằng người tao ko thể sở hữu 0 cái gì bại liệt.
Hầu không còn những mái ấm sử học tập quăng quật năm 0 thoát ra khỏi lịch Gregorius và lịch Julius, tuy nhiên những mái ấm thiên văn học tập vẫn lưu giữ nó trong số lịch bại liệt.
Do giao hội số vẹn toàn là giao hội con cái của giao hội số hữu tỷ, số thực và số phức, số 0 cũng chính là một số trong những hữu tỷ, thực và phức.
Chữ số 0[sửa | sửa mã nguồn]
Chữ số 0 được dùng để làm ký hiệu một địa điểm trống trải nhập thông số địa điểm - độ quý hiếm của tất cả chúng ta. Chẳng hạn, nhập số 2106, chữ số 0 được sử dụng với mục tiêu nhằm nhị chữ số 2 và 1 ở trúng địa điểm. Rõ ràng, số 216 có mức giá trị trọn vẹn không giống. Trong những khối hệ thống số cổ, ví dụ điển hình khối hệ thống số Babylon và khối hệ thống số Maya, một ký hiệu không giống hoặc một điểm trống trải được sử dụng với tầm quan trọng của chữ số 0.
Xem thêm: giải ngữ văn 7 chân trời sáng tạo
Đặc tính, đặc thù của số 0[sửa | sửa mã nguồn]
- Là bội của toàn bộ những số: 0 × n = 0 với từng n
- Không thể là số chia
- Là thành phần trung tính nhập luật lệ nằm trong (0 + n = n)
- Tất cả từng số Lúc thực hiện luật lệ nhân với 0 được thành quả là 0 (0 × n = 0).
- Tất cả những số không giống 0 Lúc lũy quá 0 thì vì chưng 1.
- Tập phù hợp sở hữu số thành phần vì chưng 0 là giao hội trống rỗng.
- Hàm số giản dị nhất là hàm f(x) = 0 với từng x. Khi trình diễn hàm số này bên trên hệ tọa phỏng thì nó đó là trục hoành.
- Số 0 là thành phần số trước tiên dùng để làm dựng khối hệ thống số đương nhiên theo đòi định đề Peano
- Số 0 cùng theo với giao hội trống rỗng tự động nó là một trong không khí tô pô đơn giản và giản dị nhất.
- 0! (giai thừa) vì chưng 1.
- sin(0)=0, cos(0)=1, tan(0)=0, cot(0) ko xác lập.
- Trong giao hội số phức, số 0 vừa vặn là số thực, vừa vặn là số thuần ảo.
- Trong giao hội số thực, số hữu tỉ, số vẹn toàn, số 0 ko nên là số dương, cũng ko là số âm
Lịch sử của số 0[sửa | sửa mã nguồn]
Tiền sử của số 0[sửa | sửa mã nguồn]
Vào thân ái thiên niên kỷ thứ hai trước Công Nguyên, người Babylon vẫn sở hữu một khối hệ thống chữ số địa điểm phức tạp theo đòi cơ số 60. Giá trị địa điểm (hay chữ số 0) và đã được ký hiệu vì chưng một điểm trống trải. Đến năm 300 trước Công vẹn toàn, ký hiệu nhị vết gạch ốp chéo cánh (//) vẫn được sử dụng thay cho nhập bại liệt nhập khối hệ thống số Babylon. Tuy nhiên, một tấm đá nhìn thấy bên trên Kish và đã được nghĩ rằng sở hữu niên đại khoảng tầm năm 700 trước Công vẹn toàn, bên trên bại liệt tía vết móc được dùng để làm ký hiệu một địa điểm trống trải nhập trình diễn địa điểm của số. Các tấm đá sở hữu niên đại ngay gần thời kỳ bại liệt dùng một vết móc. Tuy nhiên những loại ký hiệu địa điểm bại liệt ko được gọi là tương tự với một số trong những 0 thực sự, tuy nhiên bại liệt chỉ là một trong vết ngăn cơ hội thân ái nhị địa điểm độ quý hiếm. Người Babylon vẫn sở hữu 60 ký hiệu độ quý hiếm địa điểm, tuy nhiên bọn chúng ko thể phân biệt trong số những số 120 và 2, 3 và 180, 4 và 240,...Đơn giản là bọn chúng ko thể phân biệt trong số những số yên cầu một số trong những 0 ở cuối với những số ứng tuy nhiên ko cần thiết chữ số 0 ở cuối.
Tài liệu đã cho thấy người Hy Lạp cổ xưa dường như ko chắc hẳn rằng về vị thế của 0 như là một trong con cái số: chúng ta tự động chất vấn "Làm thế nào là tuy nhiên cái không tồn tại gì rất có thể là một chiếc gì bại liệt được?", vấn đề này kéo đến những lý luận triết học tập thú vị, và cho tới thời Trung cổ thì đạt thêm những lý luận tôn giáo về đương nhiên và sự tồn bên trên của số 0 và sự trống trải trống rỗng. Các nghịch ngợm lý của Zeno xứ Elea phần rộng lớn nhờ vào cơ hội hiểu ko chắc hẳn rằng về số 0. (Người Hy Lạp cổ xưa thậm chí là còn nghi ngại 0 với tầm quan trọng một số lượng.)
Lịch sử của số 0[sửa | sửa mã nguồn]
Trong phiên bản thảo Bakhshali, niên đại ko rõ rệt tuy nhiên được nghĩ rằng khá cổ, số 0 vẫn sở hữu ký hiệu và được dùng với tầm quan trọng một số lượng.
Năm 498, mái ấm toán học tập và thiên văn học tập chặn Độ Aryabhata ghi chép rằng "Stanam stanam dasa gunam" tức thị địa điểm này còn có độ quý hiếm cấp 10 địa điểm bại liệt, bại liệt có lẽ rằng là xuất xứ của hệ thập phân hiện nay đại; khối hệ thống số của ông sở hữu một số trong những 0 nhập cơ hội ký hiệu chữ số vì chưng vần âm của ông (hệ thống này được chấp nhận ông trình diễn những số vì chưng những từ). Lần xuất hiện nay rõ rệt trước tiên của số 0 toán học tập là nhập Brahmasphuta Siddhanta của Brahmagupta, cùng theo với những suy xét về những số âm và những quy tắc đại số.
Người Olmec ở miền Nam-Trung México chính thức dùng chữ số 0 (một hình vẽ hình vỏ sò) bên trên Tân Thế giới. cũng có thể khoảng tầm thế kỷ loại tư trước Công vẹn toàn tuy nhiên chắc hẳn rằng nhập năm 40 trước Công vẹn toàn. Nó đang trở thành 1 phần của những chữ số Maya tuy nhiên lại ko tác động cho tới những khối hệ thống chữ số bên trên Cựu Thế giới.
Cho cho tới khoảng tầm năm 130, mái ấm thiên văn Ptolemy, Chịu tác động của Hipparchus và người Babylon, đã ký kết hiệu cho tới số 0 vì chưng hình của thùng chứa chấp trống trải ko (hình dạng tròn xoe sở hữu đầu gạch ốp lâu năm ra) (1) nhập hệ cơ số 60, những số không giống thì dùng khối hệ thống số Hy Lạp. Vì nó và đã được ghi chép riêng biệt lẻ, không phải như là một trong vị trí đựng, số ko này vẫn là một trong trong mỗi ký tự động số không Helen trước tiên được ghi chép rời khỏi nhập Cựu Thế giới. Sau này thời đế quốc Byzantine, trong số phiên bản ghi chép tay Syntaxis Mathematica (Almagset) tức là cú pháp của toán học (sách vĩ đại), số ko Helen vẫn biến tấu trở nên một vần âm Hy Lạp Omicron (giá trị của chữ số này là 70)
Xem thêm: thuyết minh về một loài cây
Cho cho tới năm 525, một số trong những ko không giống vẫn được sử dụng trong số bảng tuy nhiên song với khối hệ thống số La Mã (người tao thứ tự trước tiên biết là nó được dùng vì chưng Dionysius Exiguus), tuy nhiên cơ hội ghi chép đó lại là một trong kể từ nulla tức thị không sở hữu gì hết, và không tồn tại dạng một ký hiệu. Cách người sử dụng này không ít ứng với khối hệ thống của Aryabhata (Phạn ngữ आर्यभट, Āryabhaṭa—một mái ấm thiên văn nhân tài thời cổ chặn Độ sinh vào năm 476), vẫn rất có thể biểu thị một định nghĩa thực, này đó là số ko toán học tập. Mặc cho dù vậy, việc này sẽ không được rõ rệt rõ ràng như tình huống của Brahmagupta ((ब्रह्मगुप्त) (598-668)) Lúc tuy nhiên luật lệ phân chia đã tạo ra dư số vì chưng ko, vẫn người sử dụng kể từ nihil, cũng đều có nằm trong tức thị không sở hữu gì. Các dạng số ko thời trung thế kỉ này và đã được dùng vì chưng toàn bộ những Chuyên Viên đo lường thời bại liệt (dùng trong số máy thực hiện toán Đông phương). Trong một tình huống riêng biệt lẻ lúc đầu, ký tự động N, vẫn được sử dụng nhập một bảng khối hệ thống số La Mã của Bede hoặc của những đồng sự nhập năm 725 là một trong ký hiệu của số ko.
Đến thế kỉ loại 7, nhập nằm trong thời với Brahmagupta, một số trong những định nghĩa về số ko chắc hẳn rằng vẫn đạt được ở Campuchia, và có tài năng liệu đã cho thấy việc người sử dụng số 0 trong tương lai vẫn mở rộng cho tới Trung Quốc và toàn cầu Hồi giáo.
Tham khảo[sửa | sửa mã nguồn]
- ^ Đặng Thái Minh, "Dictionnaire vietnamien - français. Les mots vietnamiens d’origine française", Synergies Pays riverains du Mékong, n° spécial, năm 2011. ISSN: 2107-6758. Trang 239.
- ^ Đặng Thái Minh, "Dictionnaire vietnamien - français. Les mots vietnamiens d’origine française", Synergies Pays riverains du Mékong, n° spécial, năm 2011. ISSN: 2107-6758. Trang 97.
Liên kết ngoài[sửa | sửa mã nguồn]
![]() |
Wikimedia Commons đạt thêm hình hình ảnh và phương tiện đi lại truyền đạt về 0 (số). |
- Zero (mathematics) bên trên Encyclopædia Britannica (tiếng Anh)
- Searching for the World’s First Zero
- A History of Zero
- Zero Saga
- The History of Algebra
- Edsger W. Dijkstra: Why numbering should start at zero, EWD831 (PDF of a handwritten manuscript)
- Zero bên trên lịch trình In Our Time của Đài truyền hình BBC. (Nghe bên trên đây)
- Weisstein, Eric W., "0" kể từ MathWorld.
Văn phiên bản bên trên Wikisource:
- “Zero”. Encyclopædia Britannica (ấn phiên bản 11). 1911.
- “Zero” . Encyclopedia Americana. 1920.
<< 0 1 2 3 4 5 6 7 8 9 >>
Bình luận